Tracking of dendritic cell migration into lymph nodes using molecular imaging with sodium iodide symporter and enhanced firefly luciferase genes
نویسندگان
چکیده
We sought to evaluate the feasibility of molecular imaging using the human sodium iodide symporter (hNIS) gene as a reporter, in addition to the enhanced firefly luciferase (effluc) gene, for tracking dendritic cell (DCs) migration in living mice. A murine dendritic cell line (DC2.4) co-expressing hNIS and effluc genes (DC/NF) was established. For the DC-tracking study, mice received either parental DCs or DC/NF cells in the left or right footpad, respectively, and combined I-124 PET/CT and bioluminescence imaging (BLI) were performed. In vivo PET/CT imaging with I-124 revealed higher activity of the radiotracer in the draining popliteal lymph nodes (DPLN) of the DC/NF injection site at day 1 than DC injection site (p < 0.05). The uptake value further increased at day 4 (p < 0.005). BLI also demonstrated migration of DC/NF cells to the DPLNs at day 1 post-injection, and signals at the DPLNs were much higher at day 4. These data support the feasibility of hNIS reporter gene imaging in the tracking of DC migration to lymphoid organs in living mice. DCs expressing the NIS reporter gene could be a useful tool to optimize various strategies of cell-based immunotherapy.
منابع مشابه
Corrigendum: Tracking of dendritic cell migration into lymph nodes using molecular imaging with sodium iodide symporter and enhanced firefly luciferase genes
“This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST, 2009-0078234); the National Nuclear R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2012M2A2A7014020); a grant from the Korea Health Technology R&D Project, Ministry of Health & Welfare, Republ...
متن کاملMultimodality Imaging of Bone Marrow–Derived Dendritic Cell Migration and Antitumor Immunity1
Here, we sought to monitor bone marrow-derived dendritic cell (BMDC) migration and antitumor effects using a multimodal reporter imaging strategy in living mice. BMDCs were transduced with retroviral vector harboring human sodium iodide symporter (hNIS, nuclear imaging reporter), firefly luc2 (optical imaging reporter), and thy1.1 (surrogate marker of NIS and luc2) genes (BMDC/NF cells). No sig...
متن کاملTracking dendritic cell migration into lymph nodes by using a novel PET probe 18F-tetrafluoroborate for sodium/iodide symporter
BACKGROUND Recently, 18F-tetrafluoroborate (TFB) was used as a substrate for the human sodium/iodide symporter (hNIS) reporter gene. This study evaluated the feasibility of performing molecular-genetic imaging by using the new radiotracer (18F-TFB) for the hNIS gene, to track dendritic cell (DC) migration in live mice. A murine dendritic cell line (DC2.4) co-expressing the hNIS and effluc genes...
متن کاملCellular bioenergetics is an important determinant of the molecular imaging signal derived from luciferase and the sodium-iodide symporter.
RATIONALE Molecular imaging is useful for longitudinal assessment of engraftment. However, it is not known which factors, other than cell number, can influence the molecular imaging signal obtained from reporter genes. OBJECTIVE The effects of cell dissociation/suspension on cellular bioenergetics and the signal obtained by firefly luciferase and human sodium-iodide symporter labeling of card...
متن کاملOptimization of Multimodal Imaging of Mesenchymal Stem Cells Using the Human Sodium Iodide Symporter for PET and Cerenkov Luminescence Imaging
PURPOSE The use of stably integrated reporter gene imaging provides a manner to monitor the in vivo fate of engrafted cells over time in a non-invasive manner. Here, we optimized multimodal imaging (small-animal PET, Cerenkov luminescence imaging (CLI) and bioluminescence imaging (BLI)) of mesenchymal stem cells (MSCs), by means of the human sodium iodide symporter (hNIS) and firefly luciferase...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015